3.2a Congruence Closure (Part 1)

Donnerstag, 29. Oktober 2015

Special Case: sets of equations & without variables Here, it will turn out that = is decidable.

Applications:

· Compiler construction: optimization of code l.g. Common Subexpression problem (identify subexpressions

that are "equal" w.r.t. their occurrence in the program). Then these expressions only have to be evaluated once

· program verification

corresponds to the question of validity of universally quantified formulas of pred. logic

etc.

Def 321 (Ground Identity)

An equation S=t is a ground identity iff b(s) = v(t) = Ø

Ex 32.2 Imperative program with variables i, i, i, l, m variables for numbers f, g variables for arrays

 $i = \delta;$ $k = \ell;$ f[i] = g[k]; $if(j == f[j]) \{$

 $\begin{cases}
\frac{1}{1 \cdot 1 \cdot 3 \cdot 1 \cdot 1}
\end{cases}$ $\begin{cases}
\frac{1}{1 \cdot 1 \cdot 3 \cdot 1 \cdot 1}
\end{cases}$ m = 8

m=g[l]; Does f [m] = g [k] hold here? So we want to find out whether $f(m) \equiv_{\varepsilon} g(k)$ holds for $\varepsilon = \{i \equiv j, k \equiv l, f(i) \equiv g(k), j \equiv f(j), m \equiv g(l) \}$. Here, i.i., are not variables from 2, but constants from Eo. By Birkhoff's Theorem, instead of f(m) = g(k), we can check $f(m) \leftarrow \sum_{\epsilon} g(k)$.

Each: Develop an decision procedure that checks SEt if É doesn't Contain variables. Idea: Given E, compute all equations M=V that are entailed by E (i.e., all equations with M=EV). Then check whether s=t is among these equations.

To compute all equations entailed by \mathcal{E} , consider reflexivity

symmetry

transitivity

congruence/monotonicity

The property of $\frac{1}{2}$

Def 323 (Direct Consequences of E)

For a set of ground identities E over a signature E we define:

refine;

 $\cdot R = \{t = t \mid t \in \mathcal{T}(\Sigma)\}$

 $S(\mathcal{E}) = \{ t = s \mid s = t \in \mathcal{E} \}$

. $T(E) = \{S = Y \mid \text{there exists a } t \in T(\Sigma) \text{ such that } S = t, t = Y \in E \}$

• $C(\varepsilon) = \{f(s_n, ..., s_n) = f(t_n, ..., t_n) \mid f \in \Sigma,$ $S_i = t_i \in \varepsilon \text{ for all } 1 \leq i \leq n \}$

 $\frac{E \times 324}{\text{Let } \mathcal{E} = \{ i \equiv i, k \equiv l, f(i) \equiv g(k), j \equiv f(j), m \equiv g(l) \}}$ $R = \{ i \equiv i, j \equiv j, f(i) \equiv f(i), f(g(k)) \equiv f(g(k)), \dots \}$ $S(\mathcal{E}) = \{ j \equiv i, l \equiv k, g(k) \equiv f(i), f(j) \equiv j, g(l) \equiv m \}$ $T(\mathcal{E}) = \{ i \equiv f(j) \}$

 $C(\mathcal{E}) = \{f(i) = f(j), g(i) = g(j), \dots \} \in \text{Noequations}$

Clearly, $\mathcal{E} \cup \mathcal{R} \cup \mathcal{S}(\mathcal{E}) \cup \mathcal{T}(\mathcal{E}) \cup \mathcal{C}(\mathcal{E})$ only contains equations that are entailed by \mathcal{E} , but it does not yet contain all of these equations

=> One has to repeat the application of S, T, and C (potentially infinitely often)

(potentially infinitely often).

This results in the congruence closure of E

Det 325 (Congruence Closure) For a set of ground identities & over a signature Σ , we define:

· & = E v R

• $\mathcal{E}_{i+n} = \mathcal{E}_i \cup S(\mathcal{E}_i) \cup T(\mathcal{E}_i) \cup C(\mathcal{E}_i)$ for all $i \in \mathbb{N}$.

The Congruence closure of \mathcal{E} is the "limes" of the sequence $\mathcal{E}_0, \mathcal{E}_1, \mathcal{E}_2, \dots$, i.e., $\mathcal{E}(\mathcal{E}) = U \mathcal{E}_i$

To check whether $S = \varepsilon t$ holds, we now start computing the congruence closure $(C(\varepsilon), Tf)$ $S = t \in C((\varepsilon), we veturn "yes" and otherwise, we veturn "no".$

Questions

1. Is this correct (i.e., does S= t iff S=t \in C((\varepsilon))

hold?) Yas, see Thin 327

2. In general, the iteration $\mathcal{E}_0, \mathcal{E}_1, \ldots$ does not terminate (i.e., $\mathcal{E}_0 \subset \mathcal{E}_1 \subset \mathcal{E}_2 \subset \ldots$). Therefore this procedure doesn't terminate if $S=t \notin C(\mathcal{E})$.

$E \times 326$: $f(m) = g(k) \in \mathcal{E}_g \subseteq CC(\mathcal{E})$

Thun 327 (Congruence Closure is Sound + Complete) Let \mathcal{E} be a set of ground identities over \mathcal{E} , let $S, t \in \mathcal{T}(\mathcal{E})$. Then: S = t iff $S = t \in CC(\mathcal{E})$.

Proof
"E" (Soundness)
We have to show that $S=t \in \mathcal{E}_{i}$ implies $S=\varepsilon t$ for all $i \in \mathbb{N}$. We use induction on i.

Ind. Base: i=0Since $\mathcal{E}_0 = \mathcal{E}_0 \mathcal{R}$, this follows from reflexivity of = \in (Lemma 3.1.10).

Ind. Step: $S = t \in \mathcal{E}_{i+1} = \mathcal{E}_i \cup S(\mathcal{E}_i) \cup T(\mathcal{E}_i) \cup C(\mathcal{E}_i)$ By the induction hypothesis, we have M = V for all $M = V \in \mathcal{E}_i$. Then we also have S = t, since S = t is a congruence relation (Lemma 3.1.10).

"=>" (Completeness): De postpone this proof, be-Cause we will show a stronger statement in Thun 3.2.17. Problem of Question 2 remains:

In general, $\mathcal{E}_i \subseteq \mathcal{E}_{i+n}$ and thus, the iteration to compute $CC(\mathcal{E})$ does not stop. $i=j\in\mathcal{E}_0$ $f(i)=f(j)\in\mathcal{E}_n\setminus\mathcal{E}_0$ $f(f(i))=f(f(j))\in\mathcal{E}_2\setminus\mathcal{E}_1$ $f''(i)=f''(j)\in\mathcal{E}_n\setminus\mathcal{E}_{n-n}$